
41

The Design and Performance
of a Shared Disk File System for IRIX

Steve Soltis, Grant Erickson, Ken Preslan, Matthew O’Keefe, and Tom
Ruwart

Department of Electrical and Computer Engineering
and

Laboratory for Computational Science and Engineering
University of Minnesota
Minneapolis, MN 55455

okeefe@ece.umn.edu
+1 612 625-6306

Abstract: In this paper we present a new storage architecture for clusters that creates a
shared memory of disk storage that is uniformly accessible to all cluster clients, scales to
large capacity, and provides very high performance and connectivity. The cluster
structure resembles a symmetric multiprocessor (SMP) in that clients (processors) can
access disk data (memory) across a local area network like Fibre Channel (a bus or other
interconnection network). All clients can see and access the same disk data with perfect
consistency. Our approach avoids buffer copy overheads and server bottlenecks found in
traditional file systems while scaling to potentially large numbers of clients and large
capacity disk systems.

We provide a description of the basic file system design, our current implementation on
SGI IRIX operating system, and detailed benchmarking and performance analysis results.
Good speedup and throughput is achieved for large files across 3 clients and 4 high
performance disk arrays and on other client-array configurationsi .

1. Introduction

Computer architects have for many years struggled with the problem of fast and efficient
transfer of data between main memory and external storage devices, primarily disks. Until
recently, it had been convenient (and certainly accurate) to point out that disk drives were
three or four orders of magnitude slower than main memory and that their rate of capacity
increase (25% per year), access time decrease (1/3 over 10 years), and bandwidth increase
(20% per year) were below the corresponding rates for both IC logic for processors and
DRAM for main memory trends. However, significant innovation in nearly all aspects of
disk technology have accelerated these disk technology improvement curves so that since
about 1992:

• capacity increases for disks at 60%/year are now roughly equal to those found in main
memory

• bandwidth off the media is now increasing on average at about 40%/year

• access times are greatly reduced for some accesses that exploit on-board disk cache.

As was pointed out in the original RAID (Redundant Arrays of Inexpensive Disks) paper
[6], a commodity market in SCSI (Small Computer Systems Interface) disk drives
encouraged single-chip integration of SCSI controllers. Coupled with an on-board
microprocessor and recent advances in high speed serial interfaces, disks now can

42

communicate with clients over intelligent, fast, and highly functional interfaces such as
Fibre Channel. This interface technology combines both network and storage features and
provides an industry-standard, high-bandwidth, switched interconnection network between
clients and drives. These dramatic developments have encouraged us to propose a
revolutionary rather than evolutionary approach to designing future storage architectures,
one that assumes disks are highly-capable peer devices available directly on a network.

Traditional client/server distributed computing is limited in that it simply provides a
mechanism for a client machine to transparently access data on a remote server through the
client’s local file system. Though useful, this approach limits the potential storage
efficiency and speed that can be realized by distributed systems. The server is a potential
bottleneck and single point of failureii. To avoid both problems requires expensive
redundancy (e.g., a Tandem system) or specialized hardware (for example, hardware built
by Auspex or Maximum Strategies) tuned for the network file system protocols such as
NFS. An alternative and increasing popular approach is clustering, which physically
integrates stand-alone computers using fast networks, shared disk storage, and a single
system image to create scalable compute and data servers [11], [7], [1].

An important component in several cluster designs is a shared file system that allows
cluster machines to directly access shared disk devices across a network [7], [9], [4], [3],
[11], [8] instead of through a server, increasing cluster performance and availability. In
addition, we will show that such a shared file system also makes each node in a storage
area network (SAN) more effective. A SAN consists of a local area network that allows
storage devices to be directly attached to the network.

Disk drive and LAN speeds have increased gradually over the last ten years. Hard disk
drives have had transfer rates from 1 to 3 Megabytes/second directly from media, though
recently these rates have increased to 5 and in the next year will likely be over 20
Megabytes/second. During that period, Ethernet bandwidth has been limited by its shared
physical media to less than 1 MB/sec. Hence, though direct disk attachment to networks is
now possible [5], the network bandwidth has generally been too low to make it possible to
exploit all the aggregate disk bandwidth actually available on the network. This imbalance
between disk drive and Ethernet speed has become even more pronounced with RAID
devices and multi-level RAID hierarchies which have aggregate bandwidths of several
hundred Megabytes/second or more [12].

Fortunately, recent advances in switching technology, fiber optics and the convergence of
network and channel interfaces [13], [10] are allowing order-of-magnitude improvements
in network latency and bandwidth through new technologies like Fibre Channel and
Gigabit Ethernet. Open standards and high-volume markets, combined with the constant
increase in functionality and decrease in cost for microelectronic devices, will drive down
network costs. The previous speed imbalance between disk drives and networks will be
reversed: parallel drive designs will be needed to exploit switched network bandwidth and
meet the requirements of tomorrow’s demanding applications.

For example, the new Fibre Channel standard integrates both storage and networking
capabilities into a single interface that currently has a speed of 100 Megabytes/second (and
a growth path to 400 Megabytes/second), allows both low-cost loop connections (much
like FDDI rings) with up to 126 devices at distances beyond 100s of meters and is scalable
to 100s or 1000s of devices with Fibre Channel switches. Yet Fibre Channel will achieve
very widespread use with disk drives and adapters priced about the same as parallel SCSI
technology [2]. In contrast, today’s parallel SCSI technology supports only about 8
devices per bus with each bus extending at most 25 meters making the technology
effectively unscalable.

43

These new network technologies will certainly improve the performance of today’s client-
server networks. However, the advances in network-attached storage interfaces, network
bandwidth and scalability, disk bandwidths, capacities and access times along with
demanding new applications requiring high bandwidth and high availability challenge the
basic client-server architecture upon which distributed systems have been constructed.
Distributed systems in the future will increasingly rely on clustering for high availability
and will require richly interconnected storage networks to support data-intensive
computing.

Given these fast, low-cost, switched networks, a serious review of the division of
responsibilities between clients, servers, and storage devices has lead us to an alternative
storage architecture, based upon our Global File System (GFS) [17] design that is
serverless and consists only of clients and networked storage devices. This proposal
motivates the design of the GFS, outlines its basic structure, describes the current software
and related performance results and how we intend to extend and test the GFS within the
context of an innovative hardware infrastructure here at the University of Minnesota.

A key GFS goal is to remove the master-slave structure found in current distributed
computing client-server environments. Instead, given the low latency and high bandwidth
of new network technologies, we can design a symmetric multi-client system where
multiple clients access storage devices across a fast switched network such as Fibre
Channel. This allows a cluster to behave much like a symmetric multiprocessor: processors
(clients) are equal in the eyes of the kernel (there is no master) and each has equal access to
the main memory (disk drives or other storage devices) via a fast bus, multistage network,
or crossbar switch (e.g., a fast switched network such as Fibre Channel). This structure
has many advantages:

• The GFS provides a storage architecture that allows the storage system designer and
administrator to pool disk drives into a shared disk memory equally accessible to all clients
in the system.

• There is no single point-of-failure for a storage device since it is not attached to a single
client, thus allowing for fail-over redundancy [20]. Low-level RAID striping provides
redundancy at in the disk drives, much like error-correcting DRAM main memories.

• The GFS architecture can exploit the bandwidth capabilities both within and across next-
generation PCs, desktop workstations, high-end servers and supercomputers.

• Local client bandwidth need not be wasted in making transfers from a local storage device
to another client as in client-server architectures.

• The GFS architecture is inherently more reliable than other distributed file systems since
it is easier to build redundancy into a disk array than it is to insure that a complicated server
(including hardware, software, and network connections) does not fail.

• The size of the file system and consequently the size of a single file is not limited by the
size of the storage subsystem on any given client.

• The file system may span multiple storage devices.

• Each client connected to the peripheral network views the devices as locally attached.

44

These GFS advantages are relevant both in tightly-integrated cluster architectures but also
in more loosely-coupled storage area networks, enabling more efficient data transfer and
sharing.

2. Global File System—Architecture and Design

The Global File System is a distributed file system based on shared network-attached
storage. Clients service only local file system requests and act as file managers for their
own requests; storage devices serve data directly to clients. No direct communication is
necessary between clients to enable basic GFS operation so that client failures or
bottlenecks do not in general affect other clients.

 How GFS Views Network Storage

As shown in Figure 1, in a GFS storage system the network-attached storage devices on
the peripheral network form a global pool that we call the Network Storage Pool (NSP) that
can be carved up into many subpools. This partitioning into subpools allows the system
manager to configure separate subpools, each with different characteristics, including:

• number of disks (or disk arrays) in a subpool
• stripe unit size
• access attributes (such as client affinity for a particular subpool, contiguous blocks, etc.)
• performance attributes (such as meeting a strict bandwidth or latency limit).

GFS provides transparent parallel access to storage devices while maintaining standard
UNIX file system semantics: user applications still see only a single logical device via the
standard open, close, read, write and fcntl. This transparency is important for ease-of-use
and portability. However, GFS will allow some user control of file placement on physical
storage devices based on the appropriate attributes required such as bandwidth, capacity, or
redundancy.

 A Brief Description of File Systems

File systems maintain persistent user and system data on storage devices such as disk
drives. They maintain files by keeping pointers to file data blocks which are fixed size
(typically 1-4Kbytes) and an integer multiple of the storage device block size. Some file
systems such as UFS [20] have semantics that allow applications to access data in units
smaller than the file system block size which generally requires buffering in main memory.

A file is an operating system abstraction that hides from the user the details of how the data
is mapped to physical storage devices. Typically, an application reads and writes data to
and from a file as if the data were a linear sequence of randomly-accessible bytes (or blocks
or possibly records) — but the data may, and often is, scattered throughout the blocks of
the physical device.

45

Figure 1: Global File System Distributed Environment

A directory is a type of file which contains groups of other files and directories. Directories
are hierarchical, yielding a tree-structured name space containing all files and directories for
a given file system. Associated with each file is a unique number or handle called an inode
number in UNIX file systems. Each inode has a corresponding dinode located on the
physical storage device which maintains information about the file owner, permissions,
number of links, access times, size and pointers to the location of the file’s data blocks on
the physical storage devices. An inode is the in-memory data structure corresponding to
the dinode.

The file system stores the dinodes, known as metadata, along with the actual file data. In
addition to dinodes, the file system maintains free lists of data blocks not allocated to files.
In modern UNIX file systems, free lists are implemented as bitmap tables where each bit
represents a file system block; a bit that is set signifies that the corresponding block is
already allocated. A file system maintains a single superblock which contains the layout of
the file system, maintains counts of free dinodes and free data blocks, and stores mount
information such as mount device and access privileges.

 GFS Implementatio n: Metadata and Data

The GFS structure and internal algorithms differ from traditional file systems, emphasizing
sharing and connectivity rather than caching. Unlike local file systems, GFS distributes
file system resources across the entire storage subsystem, allowing simultaneous access
from multiple machines. GFS also attempts to place specific data types, either metadata or
data, on subpools with suitable performance characteristics.

46

The network storage pool (NSP) shown in Figure 1 supports the abstraction of a single
unified storage address space for GFS clients. The NSP is implemented in a device driver
layer on top of the basic SCSI device and Fibre Channel drivers. This driver translates
from the logical address space of the file system to the address space of each device.
Subpools divide NSPs into groups of similar device types which inherent the physical
attributes of the underlying devices and network connections.

GFS, unlike typical file systems, distributes its metadata throughout the network storage
pool rather than concentrating it all into a single superblock. As shown in Figure 2,
multiple resource groups are used to partition metadata, including data and dinode bitmaps
and data blocks, into separate groups to increase client parallelism and file system
scalability, avoid bottlenecks, and reduce the average size of typical metadata search
operations. One or more resource groups may exist on a single device or a single resource
group may include multiple devices. Resource groups can be thought of as partitioning the
file system into distinct sets of files and available data and metadata blocks.

Resource groups are similar to the allocation groups (AGs) found in SGI’s XFS file
system [19]. Like resource groups, allocation groups exploit parallelism and scalability by
allowing multiple threads of a single computer to allocate and free data blocks; GFS
resource groups allow multiple clients to do the same.

GFS also has a single block, the superblock, which contains summary metadata not
distributed across resource groups as shown in Figure 3. This information includes the
number of clients mounted on the file system, bitmaps to calculate the unique identifiers for
each client, the device on which the file system is mounted, and the file system block size.
The superblock also contains a static index of the resource groups which describes the
location of each resource group and other configuration information.

A GFS dinode takes up an entire file system block because sharing a single block to hold
metadata used by multiple clients causes significant contention. To counter the resulting
internal fragmentation we have implemented dinode stuffing which allows both file system
information and real data to be included in the dinode file system block. If the file size is
larger than this data section the dinode stores an array of pointers to data blocks or indirect
data blocks. Otherwise the portion of a file system block remaining after dinode file system
information is stored is used to hold file system data. Clients access stuffed files with only
one block request, a feature particularly useful for directory lookups since each directory in
the pathname requires one directory file read.

Consider a file system block size of 16 KB and assume the dinode header information
requires 128 bytes. Without stuffing, a 1-byte file requires a total of 32 KB and at least 2
disk transfers to read the dinode and data block. With stuffing, a 1-byte file only requires
16 KB and one read request. The file can grow to 16 KB minus 128 bytes, or 16,266
bytes, before GFS unstuffs the dinode.

GFS assigns dinode numbers based on the disk address of each dinode. Directories
contain file names and accompanying inode numbers. Once the GFS lookup operation
matches a file name, GFS locates the dinode using the associated inode number. By
assigning disk addresses to inode numbers GFS dynamically allocates dinodes from the
pool of free blocks.

Using a flat pointer tree structure as shown in Figure 4, the maximum file size for GFS
assuming 8K file system blocks and 8 byte pointer addresses is about a factor of 1000
greater than those attainable with UFS. (However, the UFS dinode pointer tree requires
fewer indirections for small files.) Other alternatives include extent-based allocation such
as SGI’s EFS file system or the B-tree approach of SGI’s XFS file system [19]. The
current structure of the GFS metadata is an implementation choice and these alternatives are
worth exploration in future research.

47

Figure 2: Files Mapped onto Resource Groups and Subpools.

 GFS Implementation: Consistency and Caching

As shown previously, GFS exploits network-attached storage in a Network Storage Pool
to create a shared disk memory that behaves much like the shared main memory found in
multiprocessors today: each processor sees the same file system name space and has equal
access to the shared disk memory. And like a multiprocessor system which must permit
controlled, synchronized access to shared memory [14], a key design issue is the ability of
each client to access the file system that may span many shared storage devices without
destructively interfering with other clients accessing the same file system.

Multiple client accesses to shared devices must be synchronized: the three primary
alternatives are disk-based [18], device-based [9] or client-based [7], [8], [3]
synchronization. In the disk-based approach used by GFS, locks resident on the drive are
used by multiple clients to safely manipulate file system metadata. A device-based approach
is similar except that the locks are found on a shared device independent of the disk drives.
Finally, client-based synchronization distributes the locking function between the clients:
messages are exchanged to lock a particular file or resource. Some form of lock table
(either centralized or distributed) is used to maintain the current state of shared, potentially
locked resources.

GFS uses atomic read-modify-write operations on disk-resident metadata to maintain file
system consistency. These operations guarantee that at a fixed point in time data exists in at
most three places: the disk media, the disk on-board cache, and in client memory. The disk
maintains consistency between its media and cache while the GFS file system uses disk-
based locks to implement atomic operations on metadata to maintain consistency between
multiple clients and disk devices. Atomic operations on shared data are performed by
acquiring exclusive access to the data via a lock, reading the data from memory or storage,

48

modifying the data, writing the data back, and releasing the exclusive access by giving up
the lock.

Figure 3: GFS Metadata Structure

Our initial GFS implementation [15] used the basic SCSI command for locking devices
known as RESERVE/RELEASE [2]. However, this command works at the granularity of
an entire disk which makes it impossible to have more than one lock active for a single
device, severely restricting parallelism and hence scalability. The SCSI standard does
allow reservations on “extents” (contiguous logical blocks) but since this command is not
mandatory very few drives actually support it. In addition, in discussions with our
industrial partners Seagate and Ciprico we found that this particular command would add
significant overhead to other commands, making it less appealing to implement. In
response, we worked jointly with Seagate and Ciprico to develop a new SCSI command
called DLOCK [15] which provides a fast, efficient locking primitive — a device lock —
ideal for our GFS implementation.

49

Figure 4: GFS Dinode Internal Structure

Device locks (DLOCKs) are implemented as an array of state bytes in volatile storage on
each device. Each lock is referenced by number in the SCSI command: the state of each
lock is described by one bit. If the bit is set to 1, the lock has been acquired and is owned
by an initiator (client). If the bit is 0, the lock is available to be acquired by any initiator.
The DLOCK command action test and set first determines if the lock value is one. If the
value is 1, then the command returns with status indicating the lock has already been
acquired. If the value is 0, DLOCK sets the lock to 1 and returns GOOD status to the
initiator. The DLOCK command clear simply sets the lock bit to 0. A test operation is
provided to read (but not set) the state of the lock.

It is important to realize that the device does not itself understand how the lock relates to the
data on its own media or on other devices: that is the task of the file system or database.
Hence, the granularity at which the lock is applied is up to the system software. In Figure
3, we can see that the current GFS implementation associated device locks with resource
groups, dinodes, and the super block. DLOCKs are general enough to support mutual
exclusion on just about any resource on the network. These locks are only held temporarily
during metadata updates so it is important that the DLOCK commands be executed quickly.

The GFS metadata strategy is to cache metadata both on the disk drive caches and client
memory. If exploited properly, the solid-state buffer memories on the disk drives provide
a convenient cache structure that can be shared by multiple GFS clients. GFS clients can
also directly cache some file system metadata that is read-only. This approach uses only a
small amount of client memory for file caching and removes the burden other distributed
file systems like AFS and DFS [20] have in supporting large, sophisticated file caches
directly on clients. This plays directly to the new capabilities of disk drives: faster
interfaces and fast access to local disk cachesiii.

Reliability and availability are important to the Global File System since it is designed to
support large numbers of disks and clients operating in parallel. Given high disk drive
failure rates some form of redundancy is necessary at the drive level. This can be done with
the appropriate RAID level applied to groups of drives to provide high availability. Client
failures can be quite common: in traditional client-server systems a client failure implies
loss of access to data on drives attached to the client. This problem is avoided in the GFS
because drives are not attached to a single client but are instead accessed across a peripheral

50

network. This network should in general be more reliable than either clients or devices and
provides multiple, redundant paths between themiv.

But important issues such as lock contention, redundancy, fairness, and error recovery
must be considered in the design. Our proposed DLOCK SCSI command provides for
additional lock state known as the logical clock that lets clients determine when another
client with a lock has failed, leaving the lock in a zombie-like state [15]. We have proposed
a distributed recovery mechanism using these clocks in the event of client failure. This
information can also be used to help prevent a slow client from being starved for access to a
particular lock and in measuring device workloads to provide information to a file system
load-balancing utility. Finally, this state information allows GFS clients to determine
whether metadata cached on the client has been modified back on the device and is therefore
stale. Hence, DLOCK provides a simple yet elegant command that integrates consistency,
caching, and recovery in the GFS architecturev.

3. The Current Global File System Implementation and its Performance

We have a GFS implementation developed on Silicon Graphic’s IRIX operating system
using the VFS/VNODE interface [20]. Our implementation is based upon the architecture
described in section 2 and includes the GFS VNODE and VFS operations, a network
storage pool driver, test scripts, performance measurement GUIs, and file system utilities
(like mkfs) that together comprise nearly 40,000 lines of code. It is basically complete
and further testing and device integration are proceeding as GFS becomes available to users
in our laboratory and elsewhere so that we may study its performance under real application
workloads. We are also adding more industrial partners to our efforts to more widely
disseminate this new technology.

Though much of our initial testing and development have exploited parallel SCSI disk
drives we are most interested in GFS performance and scalability on a true network-
attached storage interface like Fibre Channel. A detailed report on our initial performance
results can be found in [16]. Here we summarize these results; later we discuss the
implications of this work relative to other research in this area and our proposed research
objectives.

The test configuration we used is show in Figure 5. We were interested in how GFS
performance would scale as both clients and disk arrays were added to this four-client,
four-array configuration. We tested for several parameters including file transfer time and
bandwidth using a range of file sizes. Some tests measured the aggregate transfer rate
across all clients working together while others measure the throughput of transferring files
of varying sizes across the whole system. The tests included measurements from eight
Seagate Barracuda 9 Fibre Channel disk drives and 4 Ciprico 7000 series RAID-3 Fibre
Channel disk arrays connected via a 16-port Brocade Silkworm Fibre Channel switch to 4
SGI Challenge computers.

51

Figure 5: GFS Hardware Configuration for Tests Performed May 1997.

Separate measurements were performed on device lock performance which showed that on
both the Seagate and Ciprico products locking required about 1.3 milliseconds (ms) while
unlocking required 1.0 ms. GFS read performance relative to raw device performance is
given in Table 1. It can be seen that GFS performance relative to the underlying hardware
is quite good for larger files but lags for smaller files. Small file performance lags in GFS
because the high metadata access overheads are not amortized by the long transfer times
required by larger files. In addition, current disk device caches are not tuned well to cache
metadata; these caches are focused mainly on read-ahead and write-behind of sequential
data and are used to essentially cache several tracks worth of data. Hence, further joint
work with our industrial partners will be necessary to develop and implement appropriate
caching strategies on devices and integrate into GFS the necessary cache control features to
exploit these device caches.

Table 1. Raw Disk Performance versus GFS Read Performance.

52

Figure 6: Aggregate Transfer Rate of 256 Mbyte Files with a Root Directory Device.

Figure 7: Scaled Speedup of 256 Mbyte Files with a Root Directory Device.

53

Figure 8: Aggregate Transfer Rate of 256 Mbyte Files.

Figure 9: Scaled Speedup for 256 Mbyte File.

The scaling observed for aggregate transfer rates across the four machines and arrays are
given in two sets of figures. In Figures 6 and 7 aggregate bandwidth and scaled speedup

54

across from 1 to 3 disk arrays and machines is given for the case where a dedicated device
is used for holding device locks and the root directory metadata. Good scaling is seen for
this case with large files sizes and minimal contention between device locks, directory
accesses, and access to actual file data. This contrasts with Figures 8 and 9 where these
same metrics were considered for the case where a dedicated root directory and lock device
was not used so that contention between accesses for file data, directories and device locks
occurred on the same array. It can be seen that performance in fact decreases with the
addition of the fourth array and machine due to this contention.

Fortunately this poor scaling is more the result of implementation decisions rather than the
fundamental GFS architecture. In fact in this test case the resource group layout was not
optimized for this configuration resulting in more contention than otherwise would have
been necessary.

4. Conclusions

We believe that our results show that a new approach to cluster file system design is
appropriate in the context of network attached storage. Our performance results are unique
compared to earlier cluster file system studies in that our results are derived from a file
system designed from scratch to exploit the data and device sharing potential of network
attached storage. Future work will include reducing contention for shared resources such
as the root directory, performance evaluation of GFS on larger configurations with up to 16
clients and 8 to 12 disk arrays, and more aggressive use of device caching for shared file
system metadata. In addition, we are implementing a scheme for distributed recovery for
device and client failures which integrates metadata consistency checking with file lock
removals for failed nodes.

References

[1] D. Seachrist, R. Kay, and A. Gallant, “Wolfpack Howls Its Arrival,” BYTE Magazine,
pp. 126-130, vol. 22, no. 8, August 1997.
[2] D. Deming. The SCSI Tutor . Saratoga, CA: ENDL Publishing, 1994.
[3] M. Devarakonda, A. Mohindra, J. Simoneaux, W. Tetzlaff, “Evaluation of Design
Alternatives for a Cluster File System,” 1995 USENIX Technical Conference, January
1995.
[4] G. Gibson et al., “File Serving Scaling with Network-Attached Secure Disks,”
Proceedings of the ACM Int. Conf. on Measurements and Modeling of Computer Systems
(SIGMETRICs ‘97), Seattle, WA, June 15-18, 1997.
[5] S. Koegler, “SPANStor Adds on Network Storage with Ease and Convenience,” Network
Computing, November 1, 1995.
[6] R. Katz, G. Gibson, and D. Patterson, “Disk System Architectures for High
Performance Computing,” Proceedings of the IEEE, vol. 77, pp.1842-1858, 1989.
[7] N. Kronenberg, H. Levy, W. Strecker, “VAXClusters: A Closely-coupled Distributed
System,” ACM Transactions on Computer Systems, vol. 4, no. 3, pp. 130-146, May 1986.
[8] I. Lloyd, “The Oracle Parallel Server Architecture,” Proceedings of Supercomputing-
Europe 92, pp. 5-7, 1992.
[9] K. Matthews, “Implementing a Shared File System on a HiPPI Disk Array,”
Fourtheenth IEEE Symposium on Mass Storage Systems, pp. 77-88, September 1995.
[10] R. Meter, “A Brief Survey on Current Work on Network Attached Peripherals,” ACM
Operating Systems Review, pp. 63-70, January 1996.
[11] G. Pfister, In Search of Clusters . Upper Saddle River,NJ: Prentice-Hall, 1995
.

55

[12] T. Ruwart and M. O’Keefe, “A 500 Megabyte/Second Disk Array,” Fourth
Nasa/Goddard Conference on Mass Storage Systems and Technologies, College Park,
Maryland, March 1995.
[13] M. Sachs, A. Leff, and D. Sevigny, “LAN and I/O Convergence: A Survey of the Issues,”
IEEE Computer, vol. 27, no. 12, pp. 24-33, December 1994.
[14] C. Schimmel, UNIX Systems for Modern Architectures. Addison-Wesley:
Reading, MA, 1995.
[15] S. Soltis, The Design and Implementation of a Distributed File System Based on
Shared Network Storage. Ph.D. Dissertation, Department of Electrical and Computer
Engineering, University of Minnesota, Minneapolis, MN, August 1997.
[16] S. Soltis, G. Erickson, K. Preslan, T. Ruwart, M. O’Keefe, The Global File System: A
File System for Shared Disk Storage, submitted to the IEEE Transactions on Parallel and
Distributed Systems, October 1997.
[17] S. Soltis, T. Ruwart, and M. O’Keefe, “The Global File System,” Fifth NASA Goddard
Conference on Mass Storage Systems and Technologies, College Park, MD, September 1996.
[18] S. Soltis, M. O’Keefe, T. Ruwart, and B. Gribstad, SCSI Device Locks, technical report,
Department of Electrical Engineering, University of Minnesota, April 1996.
 [19] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, G. Peck, “Scalability in
the XFS File System,” 1996 USENIX Technical Conference, January 1996.
 [20] U. Vahalia, UNIX Internals: The New Frontiers. Prentice-Hall, Upper Saddle
River, NJ, 1996.

i This work was supported by the Office of Naval Research under grant no. N00014-94-1-0846, by the
National Science Foundation under grant no. CDA-9414015 and no. ASC-9523480, by NASA through
grant no. NAG2-1151 and by equipment grants from Seagate Technology, Brocade Communications,
Silicon Graphics Inc. and Ciprico. Contact the authors at okeefe@lcse.umn.edu.
ii Leslie Lamport, a well-known researcher, is quoted as saying a “distributed system is one where the failure
of some computer I’ve never heard of can keep me from getting my work done.”
iii Solid-state disk caches were not widely used until about 1990. Most operating systems and file systems
were developed prior to this time, when no solid-state disk caches were available.
ivMuch like earlier IBM mainframe channel architectures, future Fibre Channel drives have multiple ports
which could be used to improve availability.
v DLOCK has been implemented by Seagate Technology and Ciprico in their disk products and we report
our initial performance results in [SoE97]. We are in the process of filing a patent application for the
DLOCK invention.

